
A Handheld Computer as an Interaction
Device to a Virtual Environment

Kent Watsen, Rudolph P. Darken, and Michael V. Capps
Department of Computer Science

Naval Postgraduate School
Monterey, California 93943-5118

+1 831 656 4072
watsen | darken | capps@cs.nps.navy.mil

Abstract

A fundamental problem hindering the advancement of
virtual world development is that of interaction
techniques. There is contention between 2D and 3D
techniques and uncertainty as to which is appropriate and
when. We have developed a simple mechanism to address
this problem whereby the user performs tasks appropriate
to 2D interfaces with the 3Com PalmPilot handheld
computer. The use of a wireless serial connection allows
for unencumbered immersion in CAVE-like
environments. Our implementation utilizes Bamboo, a
dynamically extensible virtual environment toolkit, which
enables our design to accommodate new user interfaces
on the fly. We are in the early stages of analyzing these
tasks and techniques for usability and efficiency. The
paper reports techniques that we have implemented, and
the specifics of using Bamboo and a PalmPilot for virtual
world applications.

CR Categories: H.5.2 [Information Interfaces and
Presentation]: User Interfaces - GUI; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism -
Virtual reality; C.5.3 [Computer System Implementation]:
Microcomputers - Portable Devices.

Additional Keywords: Virtual Environments,
Interaction Techniques, Mobile Computing, Dynamic
Extensibility, Component System

1 Introduction

One of the fundamental problems that continues to plague
the development of virtual environments (VEs) is that of
interaction techniques. There is contention between two-
dimensional (2D) and three-dimensional (3D) techniques
and extreme uncertainty as to which is appropriate and
when. Consequently, there are numerous instances of 3D
devices being used for 2D techniques such as gloves and
trackers used for selecting items from virtual menus.
While it is certainly the spatial attributes of VEs that
makes them special, not all interaction tasks are
necessarily 3D. Many are inherently 2D and thus are best

executed with 2D techniques preferably using 2D devices.
However, this seems to cause a conflict in that 3D devices
are needed for the 3D components of the interface. This
paper discusses methods for accommodating 2D
interaction techniques at the same time.

1.1 Interaction in Virtual Environments

The types of tasks that users might perform in any
interactive system are independent of the dimensionality
of the system. Specifically, Foley et al. [FW84] identified
interaction tasks as:

• Selection: Make a selection from a number of
alternatives.

• Position: Indicate a position on the display or in
the workspace.

• Orientation: Alter the orientation of an object in
the workspace.

• Path: Generate a path, which is a series of
positions and orientations over time.

• Quantification: Specify a value (i.e. a number) to
quantify a measure.

• Text: Input a text string.

While this enumeration predates the proliferation of
3D interfaces, it remains complete and accurate for
today’s interactive systems. When applied to VEs, some
of these items are clearly 3D in nature (e.g. position,
orientation, and path), while others are not (e.g. selection,
quantification, and text). It may be convenient to use
traditional 2D techniques (e.g. menus and dialog boxes)
for the 2D elements of a 3D interface, but as these
techniques were designed for use with 2D devices
(e.g. mouse or trackball), using a 3D device (e.g. flying
mouse or instrumented glove) may prove unsuitable.

There is clearly a conflict in the design of interaction
techniques to accomplish these tasks in that techniques
that work well for 2D tasks can often be cumbersome, or
at least somewhat unnatural, when applied to a 3D
environment using 3D devices. The converse is equally
true. The development of 3D techniques using 2D devices

has been the subject of significant previous research.
Given the constraint that a 2D device must be used for a
3D task, these techniques are excellent, but if this
constraint could be removed, we can do better.

When taking the approach of replicating 2D
interaction techniques in a 3D environment, the user is
forced to sacrifice performance on one type of task in lieu
of another. It may be easy to manipulate a virtual object,
for instance, but difficult to pick an item from a menu. In
some cases, this may be acceptable if it has been
determined that either the 2D or 3D components of the
interface are predominant such that the performance
sacrifice is minimal or non-existent. But this is rarely the
case. Most interfaces have both 2D and 3D elements that
the user must be able to execute to a high degree of
proficiency. However, it has often been assumed
impractical to require the simultaneous use of both
conventional 2D (e.g. mouse, keyboard) and 3D (e.g.
tracker, glove) devices for VE applications. We would
like to reach a compromise that maps 2D tasks to 2D
devices and 3D tasks to 3D devices in a practical way.

2 Previous Work

Designing interaction techniques for VEs in this
manner— that is, retaining 2D characteristics for 2D tasks
without losing 3D capabilities for 3D tasks— is not an
entirely new idea.

An early attempt was to implement traditional 2D
widgets in 3D, but to replace the pointing/selection device
with a spatial tracker or glove [JE92]. This work was
later improved upon by using Motif widgets instead of
true 3D panels, and using Fakespace Pinch gloves for
selection [CR96]. The motivation for these projects
incorporated two essential assumptions:

1. 2D GUI widgets are a familiar interaction
technique for most users, and

2. there is a need to keep interaction uniform, such
that 3D objects are manipulated similarly to 2D
widgets.

Though the first assumption seems correct at first
glance, it does not always hold true. In this case, while
"Virtual Motif" may resemble the conventional Motif
interface, it doesn't behave similarly. Interaction is more
than the look— it's also the feel. These techniques are not
only cumbersome to use but they steal precious screen
space away from the content of the VE. It can also be
argued that the second assumption is simply a false
constraint resulting from a technological artifact. We
assume that 2D and 3D have to be the same because we
assume the use of a single interaction device. There is no

reason to believe that the use of a 2D device precludes the
use of a 3D device in every case. The real world has both
2D and 3D objects and interactions (e.g. writing on a pad
of paper versus picking up a pencil) -- so should the
virtual world.

There have been several attempts to overcome
problems associated with using 2D widgets in 3D spaces.
One design addressed only menus by using a 2D textual
overlay on the 3D world activated by a simple speech
recognition system [DR94]. This is a useful but
incomplete solution. The more well known method, and
the one most closely associated with our work, is the
"Virtual Tricorder" which confines 2D interaction and
information to a virtual handheld object [WG95, AS95]
(see Figure 1A). This technique is very effective but is
hampered by the low resolution of head-mounted
displays. Fine detail is commonly lost on objects such as
maps or text. However, the Virtual Tricorder has other
advantages such as being able to integrate 3D
functionality such as that shown in 3D magic lenses
[VJ96] (see Figure 1B). Here, the position of the handheld
device in virtual space is used as part of an interaction
technique. This same technique has been used in the real
world in an augmented reality application using a position
tracked handheld computer as a window on the world
[RN95].

Figure 1: A. The virtual tricorder used for menu selection. B.
The virtual tricorder used with a wireframe magic lens [WG95].

The technique we have developed is a combination of
all these that allows the 2D components of the interface to
be performed in a purely 2D fashion, and the 3D
components to be performed in 3D.

3 Design

The method we have developed involves the use of a
3Com PalmPilot handheld computer as an interaction
device to the VE. This approach allows us to use
conventional 2D widgets such as menus and dialog boxes
that maintain not only the look but also the feel of the
original technique. In fact, 2D techniques for our
application are identical to 2D techniques used for any
Pilot application. We also have the added advantage that

we do not lose screen space for the 2D part of the
interface. The display remains in the user's hand at all
times. As this approach requires an unobstructed view of
the handheld, it is not compatible with some display
devices such as opaque HMDs (head mounted displays).
It has, however, been shown to be compatible with
desktop, CAVE-like [CS93], and AR (augmented reality)
display environments.

Implementing an interface on a PDA (personal digital
assistant), such as 3Com’s PalmPilot, is conceptually
similar to implementing an interface using a standard GUI
toolkit such as X-Windows or MS-Windows. Following
is a brief discussion of how typical GUIs are developed,
so as to facilitate understanding of the subtleties in our
approach.

3.1 Traditional GUIs

In a traditional GUI, user input is translated by the UI into
an event (e.g. button pressed), which is then passed down
to the underlying application. The application translates
the abstract event into an action (e.g. select object) and
passes state information back up to the UI for display.
This scenario is illustrated in Figure 2 below.

Figure 2: One process, one thread

For small projects, the event handling code may be
hard coded directly into the underlying application.
Doing so, though, not only leads to a highly coupled
system that is more difficult to maintain, but it also ties
the refresh rate of both to the slower of the two. For this
reason, larger projects typically break the system into
application-specific and application-neutral parts - the UI
and the underlying “engine” respectively. In order to
allow the UI and engine to refresh as quickly as possible,
each is given its own execution loop. Traditionally, this
meant that each would have its own heavyweight process
and would communicate with the other using some form
of inter-process communication (IPC) such as shared
memory. In order to reduce interdependencies, a client
stub in the engine’s process space translates the UI events
into engine-specific commands and returns the new state

information for display. This approach is depicted in
Figure 3 below.

Figure 3: Two processes, one threads each

However, the recent availability of lightweight threads
enables multiple control loops to exist within the same
process space. More specifically, the UI and the engine
control loops can be threads in the same process. Being
in the same process space removes the need for a client
stub and thus represents the best approach. For
completeness, this approach is depicted in Figure 4 below.

Figure 4: One process, two threads

3.2 Incorporating the PalmPilot

The PalmPilot computer handles events generated both by
user input and applications. As such, it is very much like
a GUI running in its own process address space. Thus,
our design must model after the 2 process approach above
(see Fig. 3). A significant difference exists, however, in
that the PDA must communicate with its host computer
using a serial port. Fortunately, we can easily
accommodate this by having the client stub be in its own
control loop so that it can actively poll the serial port.
This scenario is illustrated in Figure 5 below.

Figure 5: Two Processes, three threads

3.3 Extending Our Requirements for the GUI

The approach developed in the previous section is viable,
but it is not satisfying as it neither completely decouples
the system nor considers the long-term future of VEs.
The first failing is best exemplified by the fact that the
client stub must be compiled into the engine’s process
space and therefore limits the range of interactions until it
is replaced. The second failing is grounded in the
observation that sooner or later there will exist large-
scale, global, virtual environments that, because they are
simultaneously inhabited by millions, can never shutdown
or reboot for any reason. In such an environment, all
modifications (e.g. system configurations) would have to
occur “on the fly.” Specifically, our client stub must be
dynamically extensible; capable of supporting new GUIs
that may be developed long after its initial deployment.

4 Implementation

The last section extended the scope for the
implementation of user interfaces for VEs. This section
introduces Bamboo and shows how it is used to
implement fully decoupled and dynamically extensible
interfaces for the PalmPilot.

4.1 Bamboo

Bamboo [WZ98] is a multi-platform system supporting
real-time, networked, virtual environments. Unlike
previous efforts, this design focuses on the ability for the
system to dynamically configure itself without explicit
user interaction, allowing applications to take on new
functionality after execution. In particular, this
framework facilitates the discovery of virtual
environments on the network at runtime.

Fundamentally, Bamboo moves dynamically loadable
libraries into and out of memory. Each library is part of a
“module,” which is a directory structure that contains, in
addition to the library itself, the geometry, texture, sound,
and/or anything else used by it. Typically, modules are
archived and subsequently downloaded via HTTP over
the Internet.

In general, modules depend on one or more other
modules much like an application depends on one or more
libraries. As the dependent module(s) must be in memory
before the new module is loaded, Bamboo defines a
convention whereby each module need only specify its
immediate dependencies (name, version, URL), as oppose
to all the dependencies of all the modules it depends on.
These dependencies are loaded first, even if it is necessary
to download them from the Internet.

Finally, as it is often not enough to simply bring
executable code into the process’s memory, Bamboo
defines an executable lattice that the newly loaded code
can attach itself to. Alternatively, the newly loaded code
could spawn its own lightweight thread. Also, being
concerned with concurrency issues surrounding threads,
Bamboo implements all the necessary synchronization
mechanisms.

4.2 Implementing a UI for a PalmPilot

The initial concern was that the client stub was hard-
coded into the engine and therefore may not be usable
with other GUIs. What is needed is a convention
whereby client stubs can plug into the system.
Fortunately, on a PalmPilot each “applet” can be designed
to implement a specific interaction capability (e.g. a
selection operation). If each applet has a one-to-one
relationship to some client proxy, then we need only load
the proxy when the applet is loaded and unload it when
the applet is unloaded.

From the system’s perspective, a special client stub is
loaded to implement a simple message passing
convention. In fact, there are exactly three messages that
this client stub might have to interpret:

1. loadModule
 - load specified module, download as necessary
2. unloadModule
 - unload specified module
3. passEventToModule
 - pass numBytes to specified module

When the user selects an applet to run, the applet
sends a loadModule message through the serial port to the
special client stub, which returns a handle to the module if
successfully loaded and an error code otherwise. When

the user closes an applet, the applet sends an
unloadModule message, specifying itself using the handle
it received when loaded. At all other times, the user can
only be using one applet at a time. Every time the user
interacts with that applet, it generates and sends a
passEventToModule message to its specific client proxy
module, which presumably will know how to deal with
that message and send back an appropriate response.

However, this solution only solves our first concern.
The second concern was that the GUI itself would have to
be dynamically extensible. For instance, after selecting
an object in a VE, it would be nice if an object specific UI
could be sent to the Pilot for further user interaction.
Using our current approach, this is easily accomplished
by sending a new applet to the Pilot. The next time the
user looks in their applets folder, they could choose to
load the new applet. Implementing this is as easy having
each applet also support the standard “hot-synch”
function provided with the system.

4.3 Current Software Implementation

Our current implementation consists of three applets and
the default LaunchPad applet built into the pilot (see
Figure 6).

Figure 6: the PalmPilot’s LaunchPad and the
Camera, Environment, and Geometry applets.

The user begins by selecting which of the applets to
run from the LaunchPad, which will become visible again
when the user selects the “Done” pushbutton (i.e. Bamboo
applet is closed) or when the built-in “Applications” silk-
screen button is selected. New applets pushed to the
PalmPilot will be visible for selection the next time the
user runs the LaunchPad applet.

The Camera applet, when loaded, initializes itself by
asking its client stub to find and attach itself to the
camera. The applet and its client also initialize
themselves to be in the “no move” state, which is
indicated to the user by the middle toggle button near the
bottom of the screen being selected. At this point, the
user can move the stylus around the screen, which has the
effect of panning the camera around the world (i.e.
moving up the screen reflects pitching up in the VE). At
any time, the user can toggle between the “move
backward” (<), “no move” (-), and the “move forward”
(>) states while panning around the screen. In this way,
the user can “fly” around the VE.

The Environment applet, when loaded, initializes itself
by asking its client stub to discover and report the current
clear color, which is then applied to the three sliderbars
(red, green, blue) before the user allowed to interact with
the applet (note that this is unnoticeably fast). As
depicted by the screen capture (Fig. 6), each sliderbar has
an associated field that displays its value (0-255). The
user can also directly input a value into the field, which
then updates the sliderbar. In this way, the user can
change the background clear color to be any of 16 million
colors.

The Geometry applet, when loaded, initializes itself
by asking its client stub to discover and report the number
of objects in the VE. An object from this list can then be
selected from the object list at the bottom of the screen,
which itself is initialized to “<none>.” Once an object is
selected, the client stub reports it current location (X, Y,
and Z) and orientation (H, P, and R). These values
(floats) are applied to each sliderbar and its associated
field located to its right. Again, the user can move either
the sliderbar or directly input the value in the field. In
this way, any object in the VE can be placed anywhere in
the VE.

The three applets were developed using Metrowerk’s
CodeWarrior for PalmPilot integrated development
environment. Each of these applets were developed in
parallel with their client stub. The process of creating a
new applet/stub combination is simplified, as Bamboo
encapsulates the common functionality and establishes
conventions for client stub interoperation. This enables
the developer to focus on their particular application task.

4.4 Current Hardware Implementation

As Bamboo is available on multiple platforms, the
machine’s vendor and operating system are not important;
we were able to run on both an SGI and a Windows NT
machines. The machine must have a free serial port
capable of running at least at 9600 baud. The Pilot can
connect to the serial port using the standard Pilot cable.
However, as our goal is to have the user to be able to
move freely about the physical environment (e.g. a
CAVE), we also spliced a cable to work with a wireless
serial port. We selected ABACOM Technologies’
Rtcom2-RS232, which has the benefit of transparently
working just like a standard serial port (i.e. no software
modifications were required). For the display, we back-
projected a InFocus LitePro 730 against a Stewert
FilmScreen 170 SN.T in a dark room. This is illustrated in
Figure Y.

Figure 7: User interacting with an immersive VE via PDA

5 Conclusions

Using a PDA as an interface in a VE enables traditional
UI techniques— without forcing 2D metaphor in a 3D
space nor 3D metaphor in a 2D space. Applying good
software engineering practices allowed us to decouple the
application dependent and independent parts. Finally,
recognizing the need for dynamic extensibility, our
solution takes on an implementation that is fully
reconfigurable. Although we have just begun and have yet
to formalize a user study, this approach has already shown
great promise. It should probably be mentioned that
Bamboo’s Java-based GUI is also fully dynamically-
extensible and has been shown to make certain kinds of
intra-user interactions never before realized possible.

There are, however, several limitations to this
approach. Because an unobstructed view of the PDA is
required, this system is not compatible with some display
devices, such as HMDs. Also, because our projection
display system has limited luminance, our PDA had to be
back-lit. Furthermore, the wireless serial port we used
carries a fair amount of noise that causes quite a few
packets (messages) to be dropped. Finally, our software
running on the PalmPilot currently does not support more
then one applet to be open at a time or enable new applets
to be pushed to it at runtime.

Finally, as we have just started to integrate tracker
technologies, we have yet to resolve what hybrid
interaction metaphors do or do not make sense. We are
currently pursuing letting the user “fly” by selecting a
velocity and simply pointing in the direction to move.
We are also pursuing letting the user directly manipulate
objects via the PDA (i.e. rotating the PDA rotates the
selected object), like when using a 3D mouse. Obviously
it will take a long time for the community to decide which
of these metaphors are useful. We can at least state use of
an inertial tracker eliminates the interference problems
associated with traditional magnetic trackers.

5.1 Future Work

There are a few issues that we have addressed but not
completely resolved and a few issues that we have not
addressed at all. A glaring area for exploration is that
area surrounding the integration of a tracker. Almost as
importantly, we’d like to further observe the ability to
push applets to the PDA of the fly, especially in the
context of providing object or user specific interactions.
Our current camera interface should be extended to allow
the user to select which of multiple cameras is to be
manipulated. Similarly, our environment module should
enable the user to affect other “environment” specific
controls, such as fog and time of day. Some interesting
new areas for research include the use of a color PDA
(PalmPilot is rumored to release one next year) and the IR
port, although we doubt the user will be gain anything
after already having the wireless serial port.

5.2 Availability

Bamboo is an active project at the Naval Postgraduate
School and is currently the infrastructure for several large
projects in the United States and abroad. Primary interest
in Bamboo is attributed to the simplicity of its design,
availability on multiple platforms, and never before seen
flexibility as users can leverage each other’s efforts from
anywhere on the Internet. The standard distribution is a
single source tree with multiple targets. Although the
code is primarily C++, the GUI is written in Java and

other components use Tcl, Python, and Perl, There is no
licensing fee or shareware charge. A mailing list (with
monthly web archives) has been established so that
interested developers can freely exchange comments.
Plans are being made to provide ongoing support and
maintenance; developments will be announced on the
mailing list as they become known. Additional papers,
documents, and the modules identified in this paper may
be found at http://npsnet.nps.navy.mil/Bamboo.

Acknowledgements

Special recognition is given to Todd Gagnon for the
wireless serial port and tracker integration. As always,
the patience of Dr. Mike Zyda has been appreciated.
Finally, this effort could not have been without the
generous support of our sponsors: DARPA, ONR,
DMSO, Advanced Network & Services, and the National
Tele-Immersion Initiative.

References

[AS95] Angus, I.G. and H.A. Sowizral, “Embedding the
2D Interaction Metaphor in a Real 3D Virtual
Environment.” Proceedings of SPIE, 1995. 2409:
pp. 282-293.

[CR96] Coninx, K., F. van Reeth, and E. Flerackers, “2D
Human-Computer Interaction Techniques in
Immersive Virtual Environments.” Proceedings
of Computer Graphics 96, 1996.

[CS93] Cruz-Neira, C., D. Sandin, and T. DeFanti,
“Surround-Screen Projection-Based Virtual
Reality: The Design and Implementation of the
CAVE.” Computer Graphics, 1993: p. 135-142.

[DR94] Darken, R.P. “Hands-Off Interaction with Menus
in Virtual Spaces.” Proceedings of SPIE 1994,
Stereoscopic Displays and Virtual Reality
Systems, 1994. 2177: p. 365-371.

[FW84] Foley, J.D., V.L. Wallace, and P. Chan, “The
Human Factors of Computer Graphics
Interaction Techniques,” IEEE Computer
Graphics & Applications, 1984. pp. 13-47.

[JE92] Jacoby, R.H. and S.R. Ellis, “Using Virtual
Menus in a Virtual Environment.” Proceedings
of SPIE Technical Conference 1666, 1992.

[RN95] Rekimoto, J. and K. Nagao, “The World
Through the Computer: Computer Augmented
Interaction with Real World Environments.”
Proceedings of UIST 95, 1995: p. 29-36.

[VJ96] Viega, J., et al., “3D Magic Lenses.”
Proceedings of UIST 96, 1996: p. 51-57.

[WG95] Wloka, M.M. and E. Greenfield, “The Virtual
Tricorder: A Uniform Interface for Virtual
Reality.” Proceedings of UIST 95, 1995: p. 39-
40.

[WZ98] Watsen, K. and M. Zyda. “Bamboo - A Portable
System for Dynamically Extensible, Real-time,
Networked, Virtual Environments.” IEEE
Virtual Reality Annual International Symposium
(VRAIS'98), Atlanta, Georgia, March 1998.

